MA 441, Fall 2011

Preparation for the Final.

Below you can find a list of definitions, axioms (well, an axiom), theorems and
(counter-)examples that you need to know for the Final. More precisely, for in-class
part of the Final, you will be given several (tentatively, ten to twenty) items from
this list to formulate. Note that it won’t have to be word-by-word citation, but
whatever you write will need to be (a) correct (as in not a false statement), (b)
easily equivalent to the textbook/lectures version.

On in-class part of the Final, you will not be asked to provide any proofs.

In the list below,
® marks definitions and an axiom;
[0 marks theorems and statements;
> marks (counter-)examples that you need to know off-hand.

Preliminaries.
® Sets, set-theoretic operations, functions, inverse function, composition.
® Injections, surjections, bijections.

© Finite, infinite sets. Denumerable (countably infinite), countable, uncount-
able sets.

O Countability of Z, Z2, Z™, Q.
O Cantor’s Theorem. Uncountability of R.
Properties of R.
® Bounded, bounded above, bounded below subsets of R.
Upper bound, lower bound of a subset of R.
Least upper bound (= exact upper bound = supremum) of a subset of R.
Greatest lower bound (= exact lower bound = infimum) of a subset of R.
Completeness property of R (= supremum property of R).
Archimedean property of R.
Nested intervals property.
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The density theorem.

Limits of Sequences.

©

Sequence of real numbers (= sequence in R).

Limit of a sequence in R, convergent/divergent sequence.
Uniqueness of limit of a sequence.

Tail of a sequence.

Bounded sequence.

Boundedness of a convergent sequence.
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Bounded but divergent sequence.
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Arithmetic properties of limits of sequences (Theorem 3.2.3).
Divergent sequences A, B such that A + B converges.

Order properties of limits of sequences (Theorems 3.2.4, 3.2.5).
Sequence (a,) with a, > 0 for all n € N, but lim(a,) = 0.
Squeeze theorem for sequences.

Increasing, strictly increasing, decreasing, strictly decreasing, monotone
sequence.

Monotone convergence theorem.
Euler’s number e.

Subsequence of a sequence.
Bolzano—Weierstrass theorem.
Cauchy sequence.

Cauchy criterion.

Sequence that tends to +o00, sequence that tends to —oo, properly divergent
sequence.

Sum of a series. Correspondence between infinite series and sequences.

n-th term test.

Limits of Functions.
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Cluster point of a subset of R.

Limit of a function.

Uniqueness of limit of a function.

Sequential criterion for limit of a function.

Function bounded a neighborhood.

Boundedness of a function that has a limit.

Bounded function that does not have a limit at 0.

Arithmetic properties of limits of functions (Theorem 4.2.4).

Functions f, g that don’t have a limit at some point ¢ € R, but f + g does.
Order properties of limits of functions (Theorem 4.2.6).

Functions f, g such that for all z in their domain, f > g, but at some point
o i = Tngo

Squeeze theorem for limits of functions.

Local separation from zero (Theorem 4.2.9).

Infinite limit of a function, limit of a function at infinity, infinite limit of a
function at infinity.

One-sided limits.

Continuous Functions.
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Function, continuous at a point. Function, discontinuous at a point.



O Criterion for continuity in terms of neighborhoods (Theorem 5.1.2).

O Sequential criterion for continuity.

O Sequential criterion for discontinuity.

® Function, continuous on a subset of R.

> Function, discontinuous everywhere (for example, Dirichlet’s function).

> Function, continuous at irrational numbers and discontinuous at rational
numbers (for example, Thomae’s function).

O Arithmetic properties of continuous functions (Theorem 5.2.1).

o> Functions f, g discontinuous at 0 such that f + ¢ is continuous at 0.

O Composition of continuous functions (at a point and on a set).

U0 Boundedness Theorem.

> Bounded but discontinuous (at least at one point) function.

> Function continuous but unbounded on an open interval.

® Absolute (= global) maximum of a function on a set, point of absolute

maximum. Absolute minimum of a function on a set, point of absolute
minimum.

O Maximum—Minimum Theorem.

> Function f continuous on an open interval such that that f does not have
maximum or minimum value.

[0 Location of roots theorem, Bolzano’s intermediate value theorem.

[0 Preservation of closed intervals. Preservation of intervals.

® Function, uniformly continuous on a subset of R.

[0 Nonuniform continuity criterion.

O Uniform continuity theorem.

> Function, continuous but not uniformly continuous on an open interval.

® Increasing, strictly increasing, decreasing, strictly decreasing, monotone
functions.

® Jump of a monotone function.

O Continuity criterion of monotone functions (Theorem 5.6.3).

O Continuous inverse theorem.

Differentiation.
® Derivative of a function at a point. Function, differentiable at a point.
0O Continuity of a differentiable function.
> Function, continuous but not differentiable at x = 0.
> Function, differentiable on R, whose derivative is not continuous at 0.
0 Arithmetic properties of derivative.
O Chain rule.



Derivative of inverse function (inverse function theorem).
Interior extremum theorem.

Rolle’s theorem.

Mean value theorem.

First derivative test for extrema (Theorem 6.2.8).
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Criterion for a differentiable function to be increasing/decreasing/constant
on an interval (Theorems 6.2.5, 6.2.7).

nth Taylor polynomial of a function.

Taylor’s theorem.
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nth derivative test for extrema (Theorem 6.4.4).

O nth Taylor’s polynomial at zero for (1 4+ ), e*, Inx, sinx, cosz.

The Riemann Integral.
® Partition, tagged partition, Riemann sum.

Riemann integrable function, Riemann integral.

Not a Riemann integrable function.

Arithmetic and order properties of Riemann integral.
Boundedness theorem for Riemann integrable function.

Cauchy Criterion for Riemann integral.
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Riemann integrability of a step function, of a continuous function, mono-
tone function.

Interval additivity theorem.

The fundamental theorem (first form).
Indefinite integral.

The fundamental theorem (second form).

Integrable (but discontinuous) function f such that ([ f)’ # f at least at
one point.
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Derivative of an indefinite integral of a continuous function.
Substitution theorem.

Null (or Lebesgue measure zero) set.

Lebesgue’s integrability criterion.

Composition theorem.

The product theorem.

Integration by parts.

Existence of exponent. Power function.
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Existence of sine and cosine.



